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Abstract 

Cardiovascular disease is a collection of pathologies related to the heart and surrounding blood vessels. A recent study 
demonstrated a link between BRCA1 gene mutation and the pathogenesis of cardiovascular disease, but the molecular mechanism is 
not understood. African American women with BRCA1 mutations tend to develop aggressive TNBC associated with a high mortality 
rate. Our previous work showed BRCA1 to bind to a downstream target Ubc9 resulting in increased SIRT1 expression which 
facilitated BRCA1 and SIRT1 to translocate to the nucleus and activate ER-ɑ. However, BRCA1 mutations in TNBC impaired tethering 
to Ubc9 resulting in cytoplasmic localization of these proteins. Loss of Ubc9 function as seen in myocardial ischemia translates to the 
development of myocardial infarction, cardiovascular disease, and tumorigenesis. Furthermore, a deleterious effect of Ubc9 further 
manifests as increased activity of VEGF and endothelial cells which influences the progression of cardiovascular disease. VEGF 
activity is also influenced by the down regulation of Caveolin-1 and SIRT1 which translates to hypertension and tumorigenesis. In 
healthy individuals, SIRT1 works to prevent arterial stiffness and regulates the apoptosis of cardiomyocytes. SIRT1 also works to 
localize BRCA1 within the nucleus, and its repression has been linked to cardiovascular dysfunction. Both ER-ɑ and ER-β contribute 
to cardiovascular function by upregulating protective effects against infarction and reperfusion injury. Specifically, mutation of 
ER-ɑ leads to increased cardiomyocyte apoptosis. This study proposes a novel molecular pathway linking BRCA1 mutation to 
cardiovascular disease and proposes potential novel targets to treat BRCA1-associated TNBC with heart dysfunction.
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Introduction
Cardiovascular disease is a category of diseases characterized 

by abnormal pathology in the heart or circulatory system; these 
diseases include arterial disease, heart failures, and cardiac dys-
rhythmias. Based on National Health and Nutrition Examination 
Survey data collected from 2016, approximately 48% of Americans 
over the age of 20 years were diagnosed with cardiovascular dis-
ease [1]. Considering the recent COVID-19 pandemic, COVID-19 
patients with cardiovascular disease had a higher mortality risk 
compared to COVID-19 patients without cardiovascular disease [2].  

 
These findings highlight the role of expanded treatment options for 
cardiovascular disease to lower mortality risk and increase patient 
quality of life. In our study, we worked to increase treatment op-
tions by understanding the relationship between the Breast Can-
cer Gene (BRCA1) mutation and cardiovascular disease. In under-
standing the interplay between the onset of cardiovascular disease 
and the BRCA1 gene, we highlighted the role of several mediators 
involved in this relationship including vascular endothelial growth 
factor, small ubiquitin-like modifier proteins, Ubc9, Caveolin-1, and 
SIRT1.

https://www.lupinepublishers.com/index.php
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BRCA1 
Breast cancer is the leading cause of death in American women. 

In 2022, it is expected that there will be over 280,000 new invasive 
breast cancer diagnoses, equivalent to 15% of all new cancer cases 
[3]. Breast cancer is often associated with mutations in tumor sup-
pressor genes such as BRCA1 and BRCA2. and sensitivity to hor-
mones in response to its quantity of receptors. BRCA1 is a human 
tumor suppressor gene associated with the etiology of breast and 
ovarian cancers. It is located on chromosome 17q21 and plays a 
role in DNA repair, regulation of cellular proliferation, and cardi-
ovascular disease [4,5]. The BRCA1 gene codes for an 1863 amino 
acid full-length BRCA1 protein [6]. Our lab has identified two splice 
variants BRCA1a/p110 and BRCA1b/p100 in breast carcinoma [7]. 
BRCA1 is an essential mediator for homologous recombination by 
the recruitment of recombinases and double-strand break repairs 
[8]. Studies have shown that mutations in BRCA1 contribute to ge-
netic instability, dysfunctional DNA repair mechanisms, and an in-
creased risk for developing chronic diseases such as cancers and 
cardiovascular disease [9,10].

BRCA1 mutation leads to the highest mortality for cardi-
ovascular disease

Breast cancer genes have been shown to be a gatekeeper in car-
diovascular health. A recent study has shown that functional BRCA1 
proteins have a protective effect on cardiomyocytes by reducing 
cardiac hypertrophy [11]. BRCA1 is known to be involved in DNA 
double-strand recombination repair. Studies have also shown that 
BRCA1 may be associated with other proteins involved in DNA re-
pair mechanisms such as oxidative DNA repair [12]. In a BRCA1 +/+ 
mouse model treated with induced DNA damage, BRCA1 promot-
ed the shuttle of subnuclear RAD51 foci and homologous recom-
bination repair mechanisms [13]. Upregulated BRCA1 promoted 
increased RAD51 nuclear localization and recombination repair in 
cardiovascular tissue [5]. On the other hand, ablation of the BRCA1 
gene led to adverse cardiovascular function [5]. Faulty DNA repair 
mechanisms are a hallmark of various chronic diseases such as can-
cer and cardiovascular disease. In addition to cancer progression, 
BRCA1-haploinsufficiency has been shown to cause an increase in 
epithelial progenitor cells and subsequent vascular dysfunction 
[14]. Correspondingly, BRCA1 mutations induce suppression of 
vascular remodeling and increase mortality due to cumulative DNA 
damage and the induction of p53 apoptotic pathways in cardiomy-
ocytes [5].

BRCA1 and Triple Negative Breast Cancer
Mutations in tumor suppressor genes such as BRCA1 and 

BRCA2 are an indicator of a predisposition to certain types of 
breast, ovarian and other cancers [15]. BRCA1 mutation-associat-
ed triple-negative breast cancer (TNBC) is an invasive and highly 
aggressive type of breast cancer.  In TNBC, malignant breast cancer 
cells lack receptors for progesterone, estrogen, and HER2, thus elic-
iting proliferation and distant metastasis. African American wom-
en have disproportional mortality rates due to BRCA1 mutations, 

TNBC, and cardiovascular disease [16,17].

BRCA1 downstream targets Ubc9, Caveolin-1, and VEGF
BRCA1 activity regulates downstream targets Ubc9, Caveolin-1, 

and vascular endothelial growth factor (VEGF). Small ubiquitin-like 
modifier proteins (SUMO) are conjugated in a posttranslational 
modification resulting in the SUMOylation of the lysine residues 
on the target protein [18]. SUMOylation has been shown to have 
protective effects against proteasomal degradation in pathological 
disease manifestations [19]. SUMO proteins are activated, conjugat-
ed, and ligated by E1, E2, and E3 ligase enzymes, respectively. SUMO 
conjugation is catalyzed by the SUMO- conjugating enzyme, Ubc9. 
The SUMOylation and deSUMOylation processes contributes to the 
stability and subcellular localization of factors in chronic disease 
[20]. In addition, these processes were shown to be modulators in 
breast cancer and cardiovascular disease [18]. In our previous stud-
ies, we found the amino-terminal of BRCA1, BRCA1a, and BRCA1b 
bind Ubc9, a SUMO-E2 conjugating enzyme [21]. In normal condi-
tions, BRCA1 binds Ubc9 in conjunction with the nuclear localiza-
tion signal, resulting in the nuclear localization of BRCA1 proteins 
[22]. However, a BRCA1 disease associated mutation fails to bind to 
Ubc9 resulting in cytoplasmic localization of BRCA1 proteins [22]. 
Furthermore, BRCA1 was shown to possess a SUMO-1 and Ubc9 
– dependent E3 ubiquitin ligase activity on ER-ɑ. Ubc9 binding 
mutants have repressed growth inhibition found in ER-ɑ negative 
breast cancer and TNBC. SUMO proteins are also shown to be in-
volved in cardiomyocyte development, protection, and cardiac gene 
expression [23]. Myocardial ischemia and oxidative stress decreas-
es Ubc9 activity and subsequently, SUMO-specific cysteine proteas-
es (SENP1 and SENP2) are activated. This results in deSUMOylation 
in ischemic infarction, cardiovascular disease, and tumorigenesis 
[24,25]. Hypoxia-inducible factor 1-alpha, HIF-1a, is upregulated 
inducing the expression of pro-angiogenic factors such as vascular 
endothelial growth factor (VEGF) as well as endothelial cell (EC) 
activity. VEGF interruption is associated with vascular toxicity, arte-
rial stiffness, blood pressure, and inflammation [26,27]. Decreased 
Ubc9 activity contributes to pro-apoptotic pathways and activation 
of endothelial cells (EC) in cardiovascular tissue. EC activation and 
ischemic stress are regulated by SUMO conjugated-E2 enzymes 
in the myocardium, influencing the progression of cardiovascular 
diseases [28]. Sirtuin-1 (SIRT1) is an NAD+ dependent histone 
deacetylase that plays a major role in metabolism, tumorigenesis, 
genomic instability, and cancer metastasis [29,30]. BRCA1 binds 
Ubc9, shuttling BRCA1 proteins to the nucleus.  BRCA1 proteins 
bind to the promoter region of SIRT1 to inhibit Survivin expression 
thus mediating cellular proliferation. Correspondingly, Caveolin-1 
is also activated which regulates vascular endothelial growth fac-
tor (VEGF) and angiogenesis [31]. It is observed that SIRT1 activi-
ty increases in the normal heart and has protective effects against 
inflammation, heart disease, and atherosclerotic plaque formation 
[32]. SIRT1 activation also attenuates arterial stiffness and hyper-
tension [33].

http://dx.doi.org/10.32474/ACRR.2022.04.000176
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Mutation carriers at higher risk of cardiovascular dis-
ease

BRCA1 mutations that are associated with TNBC, impair the 
tethering of Ubc9 and shuttling of BRCA1 proteins. Consequent-
ly, SIRT1 and Caveolin-1 are repressed. Knockdown of Caveolin-1 
and SIRT1 are shown to induce the expression of VEGF, increase 
vascular permeability, decrease vascular remodeling, and increase 
hypertension [32,34,35]. Recent studies have shown that BRCA1 
plays a role in the maintenance of cardiovascular health [5]. BRCA1 
mutations have been shown to induce defective cardiomyocyte 
function, cardiac toxicity, and ischemic stress [5,36]. African Amer-
ican women have a high incidence of BRCA1 mutations, TNBC, and 
cardiovascular disease [16,17].

Myocardial distress in response to ischemia and reperfusion 
are leading risk factors in cardiovascular disease mortality [37,38]. 
SIRT1 regulates inflammation responses in myocardial ischemia 
and reperfusion [37]. Thus, SIRT1 regulation is essential for car-
diovascular protection and prevention of cardiac cell apoptosis 
[39]. SUMOylated SIRT1 is localized in the cardiomyocyte nuclei 
[40]. However, in ischemia, the overproduction of deSUMOylase 
and SENP2 contribute to reduced nuclear localization of SIRT1. In-
vestigations on the role of Ubc9-deSUMOylation pathways indicate 
overexpression of SENP2 which contributes to cardiac dysfunction, 
congenital heart defects, and pro-atherogenesis [41,42]. Therefore, 
BRCA1 mutation-associated knockdown of SIRT1 expression has 

negative implications on cardiovascular health. SIRT1 activation is 
seen as a novel therapeutic target for cardiac ischemia and reperfu-
sion due to its involvement in essential cardiometabolic processes 
[40].

Role of ER-ɑ, VEGF, and Caveolin-1 in cardiovascular dis-
ease

An increase in SIRT1 expression promotes the subcellular nu-
clear transport of BRCA1 through Ubc9 tethered pathways which 
are essential in cardiovascular protection and breast cancer mod-
ulation. On the other hand, decreased SIRT1 binding affinity pro-
motes cytosolic localization of BRCA1 proteins and cardiovascular 
dysfunction. In accordance, there is impaired regulation of HIF1-ɑ, 
VEGF, and Caveolin-1 in BRCA1 mutation-associated cardiovascu-
lar disease. As a result, cardiomyocytes have dysfunctional nucle-
ocytoplasmic shuttle mechanisms and cardiac gene expression, as 
well as pro-apoptotic pathways that ultimately contribute to cardi-
ovascular disease. Hormonal factors such as estrogen are shown to 
have cardioprotective effects in ischemia and reperfusion through 
genomic signaling mechanisms [43]. Two of the most common nu-
clear estrogen receptors are ER-ɑ and ER-β [44]. Estrogen binding 
to ER-ɑ results in pleiotropic effects that regulate cardiac function 
[43,44]. ER-ɑ promotes up-regulation of anti-apoptotic gene ex-
pression in cardiomyocytes [45,46]. Likewise, in estrogen recep-
tor-negative cancers such as TNBC, these cardioprotective effects 
are prospectively decreased. 

Conclusions

Figure 1: A novel molecular mechanism to show how BRCA1 regulates heart function. BRCA1, by binding Ubc9, facilitates 
nuclear cytoplasmic shuttling of SIRT1 and ER -ɑ. activation. BRCA1 mutation / dysfunction (as seen in TNBC patients) results 

in loss of Ubc9 binding cytoplasmic mis-localization of SIRT1, deregulated levels of Ubc9, and ER- ɑ repression resulting in 
defective heart function.
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The BRCA1 tumor suppressor gene has long been affiliated 
with the differential diagnosis of breast and ovarian cancer; howev-
er, there is also an interconnection between BRCA1 gene mutations 
and a high risk for developing cardiovascular diseases in patients. 
Along with its many functions, studies have found that the BRCA1 
gene has a protective mechanism that contributes to sustaining car-
diovascular health, which when disrupted will lead to defective car-
diac function. Disturbances in this mechanism are brought about 
by mutations in the BRCA1 gene, which is unable to bind Ubc9, re-
sulting in down regulation of SIRT1, and Caveolin-1, as well as in-
creasing VEGF levels, thus causing a higher risk for cardiovascular 
diseases. More research in the future is still needed regarding the 
mechanism and its implications, which will provide novel ways to 
treat cardiac diseases as well as TNBC that result from the loss of 
function of the BRCA1 gene (Figure 1).
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